Stretching single fibrin fibers hampers their lysis.
نویسندگان
چکیده
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. STATEMENT OF SIGNIFICANCE Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis.
منابع مشابه
Physical Determinants of Fibrinolysis in Single Fibrin Fibers
Fibrin fibers form the structural backbone of blood clots; fibrinolysis is the process in which plasmin digests fibrin fibers, effectively regulating the size and duration of a clot. To understand blood clot dissolution, the influence of clot structure and fiber properties must be separated from the effects of enzyme kinetics and perfusion rates into clots. Using an inverted optical microscope ...
متن کاملThe elasticity of an individual fibrin fiber in a clot.
A blood clot needs to have the right degree of stiffness and plasticity to stem the flow of blood and yet be digestable by lytic enzymes so as not to form a thrombus, causing heart attacks, strokes, or pulmonary emboli, but the origin of these mechanical properties is unknown. Clots are made up of a three-dimensional network of fibrin fibers stabilized through ligation with a transglutaminase, ...
متن کاملRearrangements of the fibrin network and spatial distribution of fibrinolytic components during plasma clot lysis. Study with confocal microscopy.
Binding of components of the fibrinolytic system to fibrin is important for the regulation of fibrinolysis. In this study, decomposition of the fibrin network and binding of plasminogen and plasminogen activators (PAs) to fibrin during lysis of a plasma clot were investigated with confocal microscopy using fluorescein-labeled preparations of fibrinogen, plasminogen, tissue-type PA (t-PA), and t...
متن کاملHindered dissolution of fibrin formed under mechanical stress
BACKGROUND Recent data indicate that stretching forces cause a dramatic decrease in clot volume accompanied by gross conformational changes of fibrin structure. OBJECTIVE The present study attempts to characterize the lytic susceptibility of fibrin exposed to mechanical stress as a model for fibrin structures observed in vivo. METHODS AND RESULTS The relevance of stretched fibrin models was...
متن کاملDynamic changes of fibrin architecture during fibrin formation and intrinsic fibrinolysis of fibrin-rich clots.
Clotting and fibrinolysis are initiated simultaneously in vivo, and fibrinolysis usually occurs without any individualized lysis front (intrinsic fibrinolysis). We have developed a novel model to assess whether morphological changes resulting from intrinsic fibrinolysis are similar to those previously reported at the lysis front using externally applied lytic agents. Fibrin assembly and fibrino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 60 شماره
صفحات -
تاریخ انتشار 2017